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Abstract: The "Booth Encoding-Based Energy Efficient Multipliers for Deep Learning Systems" project addresses the pressing need 

for energy-efficient hardware solutions in deep learning. As AI applications become increasingly power-hungry, our project offers an 

innovative approach to tackle this challenge. By leveraging Booth encoding and Exponent-of-Two (EO2) quantization, we aim to 

significantly reduce energy consumption in neural network computations without compromising accuracy. This project promises to 

extend the battery life of portable devices and minimize the power footprint of neural network accelerators, meeting the growing 

demand for energy-efficient AI hardware solutions. Additionally, it is designed for effective implementation using Xilinx ISE 14.7, 

making it a practical and accessible solution for FPGA-based deep learning systems. 

 

 

I.  INTRODUCTION 

 

This research brief proposes a novel re-encoding scheme aimed at reducing the size of deep neural network (DNN) weights, 

facilitating advancements in artificial intelligence (AI) at the edge. By leveraging Booth encoding and extended power-of-

two (EO2) quantization, the scheme enables highly efficient energy computations during neural network inference while 

maintaining minimal impact on classification accuracy. The effectiveness of the re-encoding approach is demonstrated 

through the computation of both convolutional neural networks (CNNs) and linear neural networks. Two specific multipliers, 

the Extended Exact Multiplier and the EO2 Multiplier, are introduced. The EO2 quantization and re-encoding method 

achieve a 30.77% reduction in model size for CNNs and a 49.86% reduction for linear neural networks. 

Additionally, the introduced multipliers contribute to significant reductions in inference energy. Specifically, the EO2 

Multiplier reduces inference energy for CNNs by 50.6% and for linear neural networks by 90.1%. For sensor-end 

computation of the linear neural network, the EO2 Multiplier demonstrates a 77.32% reduction in area compared to an exact 

Booth multiplier and a 93.2% reduction in inference energy consumption compared to the unmodified exact multiplier. The 

proposed scheme not only enhances energy efficiency during inference but also allows for minor adjustments to re-encoding 

signal arrangements. This combination of the proposed re-encoding scheme and multipliers outperforms existing designs in 

terms of resource utilization while maintaining a minimal impact on neural network inference accuracy. This research is 

structured in two phases: Phase 1 involves the Extended Exact Multiplier, and Phase 2 focuses on the EO2 Multiplier, with 

the latter proving to be more efficient.  

Drawbacks  

 Increased Hardware Complexity 

 Potential Latency 

 Error Propagation 

 Limited Benefit for Small Multipliers 

II. Existing System 

Booth encoding is a technique utilized in digital circuit design to optimize the execution of multiplication operations. It 

achieves this by analyzing the binary representation of the multiplier and exploiting patterns within it. Rather than generating 

a partial product for each individual bit of the multiplier, Booth encoding identifies sequences of adjacent bits with the same 

value and combines them into larger groups. By doing so, it reduces the overall number of partial products required for the 
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multiplication process, thereby improving efficiency. For example, in a traditional multiplication operation, each bit of the 

multiplier triggers the generation of a corresponding partial product. However, with Booth encoding, consecutive bits of the 

same value are grouped together, allowing for the creation of larger partial products. This grouping effectively reduces the 

computational workload and resource utilization during multiplication. 

 

Proposed System 

In conclusion, this proposed work endeavors to contribute significantly to the domain of energy-efficient hardware for deep 

learning applications. By marrying the efficiency gains afforded by Booth encoding with the versatile capabilities of Xilinx 

14.7, we aspire to deliver multiplier designs that not only outperform existing solutions but also pave the way for sustainable 

and power-conscious advancements in the broader field of neural network accelerators. Through meticulous exploration, 

innovation, and validation, this research aims to make tangible strides towards meeting the burgeoning computational 

demands of contemporary deep learning while prioritizing energy efficiency in hardware implementations. 

 

Advantages 

1. The project significantly improves the energy efficiency of multipliers, reducing power consumption during deep 

learning inference, which is critical for battery-operated and power-constrained devices. 

2. Utilizing Booth encoding and exponent-of-two (EO2) quantization, the project achieves a substantial reduction in 

model size, enabling more efficient storage and deployment of neural networks. 

3. Despite the energy-saving techniques, the project maintains minimal loss in classification accuracy, ensuring reliable 

performance in deep learning applications. 

4. The proposed re-encoding scheme can be applied to existing Booth multiplier designs with minor modifications, 

making it a practical enhancement for a wide range of hardware. 

5. The project's design outperforms existing solutions in terms of resource utilization, making it a compelling choice 

for FPGA-based deep learning systems. 

System Study 

 

Introduction To Modelsim 

ModelSim is a useful tool that allows you to stimulate the inputs of your modules and view both outputs and internal signals.  

It allows you to do both behavioral and timing simulation, however, this document will focus on behavioral simulation. Keep 

in mind that these simulations are based on models and thus the results are only as accurate as the constituent models. 

ModelSim /VHDL, ModelSim /VLOG, ModelSim /LNL, and ModelSim /PLUS are produced by Model Technology™ 

Incorporated. Unauthorized copying, duplication, or other reproduction is prohibited without the written consent of Model 

Technology. The information in this manual is subject to change without notice and does not represent a commitment on the 

part of Model Technology. The program described in this manual is furnished under a license agreement and may not be used 

or copied except in accordance with the terms of the agreement. The online documentation provided with this product may be 

printed by the end-user. The number of copies that may be printed is limited to the number of licenses purchased. ModelSim 

is a registered trademark of Model Technology Incorporated. Model Technology is a trademark of Mentor Graphics 

Corporation. PostScript is a registered trademark of Adobe Systems Incorporated. UNIX is a registered trademark of AT&T 

in the USA and other countries. FLEXlm is a trademark of Globetrotter Software, Inc. IBM, AT, and PC is registered 

trademarks, AIX and RISC System/6000 are trademarks of International Business Machines Corporation. Windows, 

Microsoft, and MS-DOS are registered trademarks of Microsoft Corporation. OSF/Motif is a trademark of the Open Software 

Foundation, Inc. in the USA and other countries. SPARC is a registered trademark and SPARCstation is a trademark of 

SPARC International, Inc. Sun Microsystems is a registered trademark, and Sun, SunOS and Open Windows are trademarks 

of Sun Microsystems, Inc. All other trademarks and registered trademarks are the properties of their respective holders.   
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Standards Supported 

ModelSim VHDL supports both the IEEE 1076-1987 and 1076-1993 VHDL, the 1164-1993 Standard Multivalve Logic 

System for VHDL Interoperability, and the 1076.2-1996 Standard VHDL Mathematical Packages standards. Any design 

developed with ModelSim will be compatible with any other VHDL system that is compliant with  either IEEE Standard 

1076-1987 or 1076-1993. ModelSim Verilog is based on IEEE Std 1364-1995 and a partial implementation of 1364-2001, 

Standard Hardware Description Language Based on the Verilog Hardware Description Language. The Open Verilog 

International Verilog LRM version 2.0 is also  applicable to a large extent. Both PLI (Programming Language Interface) and 

VCD (Value Change Dump) are supported for ModelSim PE and SE users.  

Modelsim - Advanced Simulation And Debug 

ASIC and FPGA design 

 

ASIC and FPGA design 

Mentor Graphics was the first to combine single kernel simulator (SKS) technology with a unified debug environment for 

Verilog, VHDL, and System C. The combination of industry-leading, native SKS performance with the best integrated debug 

and analysis environment make ModelSim the simulator of choice for both ASIC and FPGA designs. The best standards and 

platform support in the industry make it easy to adopt in the majority of process and tool flows. 

III. Conclusion 

In our extensive study, we aimed to optimize Deep Artificial Neural Networks (DANN) by applying a novel re-encoding 

process to all fully connected layers, except for the output layer. This strategic approach was implemented in two different 

neural network architectures, leading to significant reductions in network size. Specifically, the feedforward neural network 

exhibited a remarkable size reduction of up to 49.8%, while the convolutional neural network (CNN) saw a substantial 

decrease of up to 30.7%.To further improve the efficiency of our re-encoding strategy, we optimized the Booth multiplier 

with a base-4 configuration, aligning it with the proposed methodology. The integration of our innovative Extended Exact 

Multiplier produced significant results, demonstrating a notable reduction in energy consumption during inference for both 

CNNs and linear neural networks—amounting to 50.6% and 91.1%, respectively. 

In parallel with our efforts to optimize multipliers, we introduced two low-performance network devices, referred to as EO2 

devices, characterized by minimal latency, power consumption, and overall performance. The integration of the EO2 digital 

equivalent, along with the enhanced Booth multiplier, resulted in a remarkable 94.2% reduction in power consumption 

compared to traditional multipliers. Importantly, our proposed multipliers demonstrated superior energy efficiency without 

sacrificing accuracy, highlighting their potential for widespread application in neural network design. These findings 

represent a significant advancement towards achieving more resource-efficient and environmentally friendly neural network 

implementations. 
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Results 

Our innovative re-encoding approach introduces an advanced rounding mechanism that approximates values to the nearest 

power of two, resulting in a streamlined product chart. This process creates a sawtooth pattern in the absolute error, which 

decreases as we progress further from the re-coding stage, demonstrating the systematic effectiveness of our strategy. A key 

component of our approach is the inclusion of a multiplexer (MUX) that intelligently selects outputs based on equivalent 

values, ensuring numerical balance across layers. 

To enhance our methodology, we introduce an improved bit manipulation (EBM) technique, which minimizes information 

loss during the re-coding process. Integrated exponential-of-two (EO2) multipliers further improve precision, thereby 

increasing the robustness and efficiency of the neural network. In a dual-layer configuration, one layer implements the 

original re-coding scheme enhanced with EO2 and transfer multipliers, while the other adheres to the traditional network 

structure. Each layer undergoes the proposed re-coding process, using original 8-bit quantized weights as approximations for 

practical hardware implementation. 

Our proposed EBM and EO2 multipliers consistently outperform existing methods in both theoretical power efficiency and 

neural network accuracy. This establishes our re-encoding strategy as a leader in the optimization field, with promising 

implications for future advancements. 
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