
   ISSN (Online): 2456-0448 
International Journal Of Innovative Research In Management, Engineering And Technology 

Vol. 9, Issue 10, October 2024 

 
Copyright to IJIRMET  www.ijirmet.com 117 
 

Real-Time Face Detection With Automated Email 

Alerts Using Open cv  
[1] 

Priya.S, 
[2] 

Karthikeyan. S 
[1] 

Student, Department Of Mca, Er Perumal Manimekalai  College Of Engineering(Autonomous),Hosur,  Tamil Nadu, India 
 [2] 

Assistant Professor, Department Of Mca, Er Perumal Manimekalai  College Of Engineering(Autonomous),Hosur,  Tamil Nadu, India 

 

Abstract: This project report presents a comprehensive analysis of a real-time face detection and alert system using OpenCV and 

Python. The system employs a pre-trained Haar Cascade classifier to detect human faces from live webcam feeds. This solution is 

designed to provide continuous monitoring and immediate notifications when a face is detected, ensuring enhanced situational 

awareness. The report details the core components of the project, including video capture, grayscale image conversion for efficient 

processing, and real-time face detection. When a face is identified, an alert message is generated, and the system draws bounding 

rectangles on the detected faces. The interface displays video output with marked detections and logs timestamps for each detection, 

adding a layer of traceability. The code structure emphasizes robust error handling and smooth user interaction, ensuring seamless 

operation. This system demonstrates practical applications in surveillance and automated monitoring, proving its potential in enhancing 

security measures through prompt alerts and data collection. 

The project highlights opportunities for future improvements, such as incorporating more advanced machine learning models for 

enhanced detection accuracy and integrating cloud-based storage for recording detection logs. Overall, the system's adaptability makes it 

suitable for both personal and professional security needs, positioning it as a practical and effective solution for modern surveillance.   

 

 

 

I.  INTRODUCTION 

The real-time face detection and alert system is an innovative solution developed for continuous monitoring and surveillance 

applications. This system utilizes a webcam for video capture and processes the feed to identify human faces, adding a layer 

of situational awareness to various monitoring tasks. The system identifies faces using a pre-trained Haar Cascade classifier, 

which scans the video frames to detect and mark faces in real time. Each detected face is outlined with a bounding rectangle 

and time-stamped to log the detection events accurately. 

The interface is designed for clear and user-friendly interaction, ensuring that users can easily interpret real-time detections. 

The project relies heavily on Python as the primary programming language, with OpenCV providing powerful image 

processing capabilities to handle video frames and detect faces efficiently. 

 The detection process is accompanied by on-screen visual feedback, showing the live video with marked faces to   inform 

the user of each detection. 

The combination of OpenCV and Python ensures that the system maintains a balance between real-time processing and 

detection accuracy. While there are some limitations inherent to basic detection models, the system serves as a strong 

foundation for additional features, such as sending email alerts or implementing deep learning-based facial recognition for 

improved accuracy.  

 

II. SOFTWARE REQUIREMENT ANALYSIS   
 

The real-time face detection and alert system is designed to be accessible and functional for users of all backgrounds, 

including tech enthusiasts and individuals interested in surveillance solutions.While the system can be used by anyone, its 

primary focus is on users who require real-time alerts and seamless video processing.  

 Webcam: The application needs a reliable webcam for video capture to ensure smooth and uninterrupted input for 

processing. 

 Python Environment: Python must be installed, along with essential libraries such as OpenCV for image 

processing and time for logging time stamps. 

 Pre-trained Haar Cascade Classifier: Required for detecting facial features accurately and efficiently within video 

feeds. 

 Computer Vision Library (OpenCV): Used to process the video frames and implement real-time face detection. 

 

 

 

 



    ISSN (Online): 2456-0448 
International Journal Of Innovative Research In Management, Engineering And Technology 

Vol. 9, Issue 10, October 2024 

 

 
Copyright to IJIRMET  www.ijirmet.com 118 
 

 

EXISTING SYSTEM  

 

TRADITIONAL METHODS 

• Haar Cascades:  An early approach using a series of classifiers trained on positive and negative face images to detect 

faces in images. 

• It is known for its simplicity and efficiency but may struggle with variations in face orientation and lighting. 

• Histogram of Oriented Gradients (HOG):  Used in conjunction with Support Vector Machines (SVMs) to detect 

faces. It is effective for detecting faces in images with moderate variations.  

PROPOSED SYSTEM  

 MODERN DEEP LEARNING APPROACHES 
  Convolutional Neural Networks (CNNs): Current state-of-the-art methods use CNNs to detect faces with high 

accuracy. 

  Popular models include: Single Shot Multibox Detector (SSD):A method that combines object detection and face 

detection in a single deep learning model. 

  You Only Look Once (YOLO): Known for its speed and accuracy, YOLO can detect multiple objects, including 

faces, in real-time.  

  Faster R-CNN: An improved version of R-CNN with region proposal networks for more accurate face detection. 

 

III.TECHNOLOGY USED 
In the development of the real-time face detection and alert system, several key technologies were integrated to ensure both 

functionality and an effective user experience. The system relies heavily on software tools and frameworks that enable 

seamless video processing and accurate face detection. 

At the core of the project is Python, a versatile programming language that allows for efficient handling of image processing 

tasks. Python's extensive libraries and frameworks, such as OpenCV, are essential for performing real-time face detection, as 

they provide powerful tools for video frame analysis and manipulation. OpenCV’s pre-trained Haar Cascade classifier is 

utilized to detect faces by analyzing patterns in the video frames. This classifier is known for its efficiency and effectiveness 

in detecting faces in diverse environments. 

The system also leverages the time module in Python to log the precise time of face detections, ensuring that each event is 

documented with an accurate timestamp. This allows for better tracking and analysis of detection events, adding a layer of 

traceability for security or monitoring purposes. 

 

IV.APPLICATION FEATURES 

In this real-time face detection and alert system, several key features have been integrated to provide a seamless and efficient 

user experience, enhancing both the functionality and the overall utility of the system. The application is designed to offer 

real-time face detection through a webcam feed, making it suitable for various use cases, such as security monitoring and 

automated surveillance. 

 

Application Features: 

Single User: 

 Registration and Login: New users can register via a sign-up process, where they input their credentials (username 

and password) for secure login. Returning users can simply log in using their existing credentials. 

 Home Page Access: Upon successful login, users are directed to the home page, where they can start the face 

detection process. 

 Face Detection Start: Once on the home page, users can initiate real-time face detection through a simple interface 

that processes webcam input. 

 Alert Logging: When a face is detected, the system records the time-stamped event, providing the user with 

immediate notifications about detected faces. 

 Logout: The user can log out from the application, safely exiting the session and returning to the login page. 

 

Multi-User (Advanced Features): 

 Real-Time Monitoring: Multiple users can access the system simultaneously for collaborative surveillance 

purposes. The system allows for multiple sessions running in parallel, ensuring efficient use in environments that 

require simultaneous monitoring. 

 Advanced Detection Mechanism: The application can process multiple faces in real time, drawing bounding boxes 

around detected faces and logging the event. This provides both security and ease of tracking. 



    ISSN (Online): 2456-0448 
International Journal Of Innovative Research In Management, Engineering And Technology 

Vol. 9, Issue 10, October 2024 

 

 
Copyright to IJIRMET  www.ijirmet.com 119 
 

 

 Notification System: Alerts are triggered whenever faces are detected, ensuring that users are immediately informed 

of any relevant activity. 

 Notification System: Alerts are triggered whenever faces are detected, ensuring that users are immediately informed 

of any relevant activity. 

 Video Display with Detection: The system displays the live video feed with real-time annotations, making it easier 

for users to track detected faces and monitor the environment. 

 

V.SYSTEM ARCHITECTURE   

The architecture of the real-time face detection and alert system is structured around a client-server model, where the client 

interacts with the webcam feed, and the server handles processing and notifications. The client-side is built using Python 

with OpenCV for face detection, capturing live video from the webcam and displaying the processed frames. The server-side 

is responsible for managing user sessions and triggering alerts when a face is detected.   

For real-time communication, WebSockets are employed to notify users of face detection events instantly. The Socket.IO 

module facilitates the connection between the client and the server, enabling the server to push notifications to the client in 

real time. 

 
                                        Figure 1 – (Systems Architecture Diagram) 
 

Overview of System Architecture 

 High-level description of the overall architecture. 

 Explanation of the client-server interaction and data flow. 

Data Flow and Processing  

 Step-by-step flow of data fro 

 m video capture to detection and alert generation. 

 Real-time processing logic for face detection and bounding box drawin 

 Webcam Integration: Description of how the webcam captures video input. 

 Preprocessing Module: Conversion to grayscale for optimized face detection. 

 Face Detection Module: Utilization of the Haar Cascade classifier for real-time face identification. 

 User Interface: Explanation of the video display interface and user interaction. 

 

VI.UML DIAGRAMS   

 



    ISSN (Online): 2456-0448 
International Journal Of Innovative Research In Management, Engineering And Technology 

Vol. 9, Issue 10, October 2024 

 

 
Copyright to IJIRMET  www.ijirmet.com 120 
 

 

 
The UML diagram for the real-time face detection and alert system represents the structure and interactions among various 

components in the application. The primary focus is on the relationships and flow of control between classes and modules to 

ensure a comprehensive understanding of the system's architecture. The UML diagram for the real-time face detection and 

alert system represents the structure and interactions among various components in the application. The primary focus is on 

the relationships and flow of control between classes and modules to ensure a comprehensive understanding of the system's 

architecture. 

 

The UML diagram of the real-time face detection system helps illustrate the relationships and flow of information among 

different parts of the code. It serves as a visual aid for understanding the system's architecture, ensuring that each 

component’s role and interactions are clear. 

 

VII.USE CASE DIAGRAM 

 



    ISSN (Online): 2456-0448 
International Journal Of Innovative Research In Management, Engineering And Technology 

Vol. 9, Issue 10, October 2024 

 

 
Copyright to IJIRMET  www.ijirmet.com 121 
 

 

 
 

 

PROCESSES 

     To create a video demonstrating the face detection process using OpenCV, the video would begin with an introduction 

explaining the purpose of the program and its functionality. The first segment would showcase loading the pre-trained Haar 

Cascade Classifier (haarcascade_frontalface_default.xml), highlighting its role in detecting faces. This would be followed by 

a demonstration of initializing the webcam using OpenCV's cv2.VideoCapture(0) and handling potential errors if the camera 

fails to open. 

   Next, the video would show the process of capturing frames from the webcam in real time. Each frame is converted to 

grayscale using cv2.cvtColor() to prepare it for face detection, as Haar Cascade classifiers operate on grayscale images. The 

detection step would then be illustrated, using the detectMultiScale() function to identify faces in the frame. Key parameters 

such as scale factor and minimum neighbors would be explained to show their impact on detection accuracy. 

The video would proceed to demonstrate drawing bounding boxes around detected faces using cv2.rectangle() and adding a 

timestamp for each detection using Python's time.strftime() function. The processed frames, now with highlighted faces, 

would be displayed in a window titled "Face Detection," showcasing real-time results. 

 Finally, the video would explain how to terminate the program by pressing the 'q' key, after which the webcam is released, 

and OpenCV windows are closed using cv2.destroyAllWindows(). The video would conclude by summarizing the workflow 

and demonstrating the program's ability to detect faces in different scenarios, ensuring a clear and engaging learning 

experience. 

 

RESULTS: 

The program successfully performs real-time face and eye detection using a webcam feed. It accurately detects and marks 

faces with blue rectangles and eyes with green rectangles, providing visual feedback on the video stream. The elapsed time 

during which faces are detected is tracked and displayed in minutes and seconds on the video feed. The system resets the 



    ISSN (Online): 2456-0448 
International Journal Of Innovative Research In Management, Engineering And Technology 

Vol. 9, Issue 10, October 2024 

 

 
Copyright to IJIRMET  www.ijirmet.com 122 
 

 

timer when no faces are detected.Key results include triggering SMS alerts for specific scenarios: (1) when faces are detected 

continuously for 2 minutes, an alert is sent indicating potential suspicious activity, and (2) if more than two faces are detected 

simultaneously, another alert is sent to highlight unusual behavior. The program effectively handles these cases and ensures 

timely notifications through API-based SMS integration.The system runs smoothly under normal conditions but may 

encounter challenges like false positives in detection or dependency on good lighting and a stable network for SMS 

functionality. The termination of the program is user-controlled via the "Escape" key, ensuring ease of use. Overall, the 

program demonstrates its utility in security applications by combining real-time detection with alerting mechanisms. 

 

CONCLUSION: 

This program serves as an effective real-time face and eye detection system, demonstrating its potential for security 

applications in environments like ATMs and other surveillance-critical locations. By leveraging OpenCV's Haar cascades, it 

successfully identifies faces and eyes and tracks the duration of their presence, integrating SMS alerts for suspicious activity 

detection. The system highlights faces and eyes visually, providing immediate feedback, and automates alerts when 

predefined conditions, such as prolonged presence or multiple face detections, are met.Despite its effectiveness, the program 

has limitations, including possible false positives, reliance on good lighting conditions, and dependency on a stable network 

connection for SMS notifications. Future improvements, such as adopting advanced deep learning models for more accurate 

detection and implementing robust alert mechanisms, can enhance its reliability and scalability. Overall, the program 

demonstrates a practical application of computer vision for real-time monitoring and proactive alerting in security scenarios. 

 

VII.REFERENCES 
 https://www.researchgate.net/publication/318900718_Face_Detection_Face_Recognition_Using_Open_Computer_

Vision_Classifies 

 https://github.com/swapniltake1/DeepLearningMiniProject.git 

 https://www.researchgate.net/publication/355886757_Face_Detection_and_Recognition_Using_OpenCV 

 https://github.com/ageitgey/face_recognition.git 

 https://github.com/deepinsight/insightface.git 

 

 


