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INTRODUCTION 
Helmet detection is a computer vision task that involves detecting whether a person is wearing a helmet or not. This task is typically performed using 

machine learning algorithms that are trained on a large dataset of images that contain people with and without helmets. 

The purpose of helmet detection is to improve safety measures in various industries such as construction, manufacturing, and sports. Wearing helmets 

is essential for preventing head injuries, and automating the process of helmet detection can help reduce the risk of accidents and injuries. 

There are several approaches that can be used for helmet detection, including deep learning algorithms such as convolutional neural networks (CNNs) 

and object detection algorithms such as You Only Look Once (YOLO). These algorithms can be trained on a dataset of labeled images to learn how 

to detect helmets in new images. 
 

Overall, helmet detection is an important task in many industries, and it has the potential to improve safety and prevent accidents and 

injuries. The use of machine learning algorithms can automate the process of helmet detection and help ensure that safety measures are 

followed. 

OBJECTIVES OF THE PROJECT 

The objectives of a project focused on helmet detection can vary depending on the specific application and context. However, some 

common objectives of such a project may include: 

Improving Safety: The primary objective of a helmet detection project is to improve safety in industries such as construction, 

manufacturing, and sports. By automating helmet detection, it is possible to ensure that safety measures are being followed, and reduce 

the risk of accidents and injuries. 

Real-time Detection: Another objective of a helmet detection project may be to achieve real-time detection of helmets. This can be 

important in applications such as sports analysis or video surveillance, where timely detection is critical. 

High Accuracy: The accuracy of the helmet detection algorithm is another important objective of the project. A high accuracy algorithm 

will ensure that helmets are being detected correctly, and false alarms are minimized. 

Scalability: A helmet detection project may also aim to create a scalable solution that can be deployed in various settings and industries. 

This can involve optimizing the algorithm's performance for different hardware platforms and improving its efficiency to handle large 

volumes of data. 

Overall, the objectives of a helmet detection project are to improve safety, achieve real-time detection, ensure high accuracy, create a 

scalable solution, and develop a user-friendly interface. 

PROJECT DESCRIPTION 

In this Project Work, a Non-Helmet Rider detection system is built which attempts to satisfy the automation of detecting the traffic 

violation of not wearing helmet and extracting the vehicles’ license plate number. The main principle involved is Object Detection 

using Deep Learning at three levels. The objects detected are person, motorcycle at first level using YOLOv3, helmet at second level 

using YOLOv3, License plate at the last level the number plate detect and sent the email 

SYSTEM ANALYSIS 

INTRODUCTION 

Design is the first step in the development phase for any techniques and principles for the purpose of defining a device, a process or 

system in sufficient detail to permit its physical realization. Once the software requirement have been analyzed and specified the 

software design involving three technical activities-design, coding, implementation and testing that are required to build and verify the 

software. 

SYSTEM STUDY 

System study in helmet detection involves understanding the technical aspects of detecting whether a person is wearing a helmet or  
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not. This can be achieved through the use of various algorithms, and computer vision techniques. 

The system should be designed in a way that it can accurately detect whether a person is wearing a helmet or not, even in different 

lighting conditions and angles. The following steps can be taken to perform a system study in helmet detection: 

 

Identify the requirements: Determine the specific requirements for the system, such as the types of helmets to be detected, the lighting 

conditions, the camera angles, and the accuracy needed. 

Select the appropriate sensors: Choose the appropriate sensors, such as cameras, thermal imaging sensors, or depth sensors, based on 

the identified requirements. 

Develop the algorithm: Develop an algorithm that can detect whether a helmet is present or not based on the data collected from the 

sensors. 

Train the system: Train the system using a large dataset of images with and without helmets to improve its accuracy. 

 

Test the system: Test the system in different lighting conditions and angles to determine its accuracy and reliability. 

Optimize the system: Optimize the system based on the testing results to improve its accuracy and performance. 

Implement the system: Implement the system in real-world applications, such as in traffic monitoring systems or sports safety systems. 

Overall, a system study in helmet detection involves understanding the technical aspects of the system, selecting the appropriate sensors, 

developing an algorithm, training and testing the system, optimizing it, and implementing it in real-world applications. 

EXISTING SYSTEM 

In this existing we are taking algorithm as support vector machine it will take hyper plane to divide data into test and train like input 

data and database. It will give moderate output using region of interest and moving object but we cant detect exact are of the face to 

detect the helmet. 

• Moving object.  

• Region of interest  

• Support vector machine.  

 

 

 

DISADVANTAGES 

• It has limit data set 

• Only single motor cycle identified 

PROPOSED SYSTEM 

A proposed system for helmet detection can be developed using computer vision techniques and deep learning algorithms. The system 

would involve the following steps: 

Data Collection: The first step in developing a helmet detection system would be to collect a dataset of images that contains people 

wearing helmets and people not wearing helmets. The dataset should be diverse and include images captured under different lighting 

conditions, camera angles, and backgrounds. 

Image Pre-processing: The collected dataset would then be pre-processed to remove any noise or unwanted artifacts from the images. 

This could involve techniques such as resizing, normalization, and histogram equalization. 

Object Detection: The next step would be to use a deep learning algorithm such as YOLO (You Only Look Once) or Faster R-CNN 

(Region-based Convolutional Neural Network) to detect the presence of helmets in the images. These algorithms work by identifying 

regions of interest in the image and then classifying them as either containing a helmet or not. 

Post-processing: Once the helmets have been detected, the system can perform post-processing to refine the results and eliminate any 

false positives. This could involve techniques such as non-maximum suppression and thresholding. 

Integration: The final step would be to integrate the helmet detection system into an application or platform that can be used in real-

world scenarios. This could involve developing a mobile application that uses the device's camera to capture images and detect helmets 

in real-time, or integrating the system into a surveillance camera system to monitor a specific area for helmet usage. 

Overall, a helmet detection system based on computer vision and deep learning algorithms could help to promote safety and prevent 

accidents in a variety of settings, from construction sites to sports events is shown in figure 2.4 
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Figure 2.4 Proposed System 

 

MODULE DESCRIPTION 

 

The project includes six processing modules, they are: 

• Data Collection 

• Data Annotation 

• Data Preprocessing  

• Training 

• Evaluation  

• Inference 

 

DATA COLLECTION 

 

Data collection is a crucial step in developing a helmet detection system, as the accuracy of the system will depend on the quality and 

quantity of the data used to train the model. Here are some considerations for data collection in helmet detection 

 

DATA ANNOTATION 

Data annotation is the process of adding labels to the data to make it useful for machine learning algorithms. In helmet detection, data 

annotation involves identifying the regions of interest (i.e., the helmets) in the images and labeling them accordingly. Here are some  
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considerations for data annotation in helmet detection 

 

DATA PREPROCESSING 

Data preprocessing is an important step in developing a helmet detection system using YOLO (You Only Look Once), which is a 

popular deep learning algorithm used for object detection. Here are some considerations for data preprocessing in helmet detection 

using YOLO 

 

TRAINING 

Training a helmet detection system using YOLOv3 (You Only Look Once version 3) involves the following steps: 

• Preparing the dataset 

• Configuring the yolov3 architecture 

• Preparing the pre-trained weights 

• Training the modelevaluating the model 

• fine-tuning the model  

• Deploying the model 

EVALUATION 

Evaluating the performance of a helmet detection model trained with YOLOv3 involves several metrics that can be used to assess its 

accuracy. Here are some metrics that can be used for evaluating the performance of the model 

INFERENCE 

To create an interface for a helmet detection system based on YOLOv3, you can use a graphical user interface (GUI) toolkit such as 

Tkinter, PyQt, or wxPython. Here are some basic steps for creating a GUI interface for helmet detection 

 

 

SYSTEM DESIGN AND DEVELOPMENT 

INTRODUCTION 

The system analysis follows system design with two major aspects namely, i)Logical design and ii) physical design. Following the 

design, the development of the system based on coding design using the chosen software technologies is carried out. 

LOGICAL DESIGN 

 The logic design of the system is conceived and represented using some standard design elements such as algorithmic 

procedures, Block diagram, sequence diagram, Acitivity diagram etc. 

BLOCK DIAGRAM 

A block diagram is a diagram of a system in which the principal parts or functions are represented by blocks connected by lines that 

show the relationships of the blocks. 

 

 

 

 

 

 

 

 

 

 

 

 

Block Diagram 

 Block Diagram is figure 3.2.1 describe the over work of the project. First to input the video the video is convert to frames the next step 

to using yolov3 algorithm using Blob detection. The object is detect and next step using CNN algorithm to preprocessing the image 

and final the helmet found or not  

PHYSICAL DESIGN 

 The physical design is the actual design of database tables, form design, design of input and output forms and finally the code 

design. 

DATASET  

 This dataset was obtained from online.(http://www.kaggle.com). The dataset images in shown in figure 3.4 
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Table 3.4 Data Set Image Format Table 

 

 
 

Figure 3.4 Dataset images 

 

MODULES 

 The project includes six processing modules, they are: 

• Data Collection 

• Data Annotation 

• Data Preprocessing  

• Training 

• Evaluation  

S. 

NO. 

IMAGE 

NUMBER 

TYPE      

SIZE 

1 BikesHelmets0 PNG 

File 

406 KB 

2 BikesHelmets1 PNG 

File 

664 KB 

3 BikesHelmets2 PNG 

File 

725KB 

4 BikesHelmets3 PNG 

File 

517 KB 

5 BikesHelmets4 PNG 

File 

593 KB 

6 BikesHelmets5 PNG 

File 

584KB 
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DATA COLLECTION 

Data collection is a crucial step in developing a helmet detection system, as the accuracy of the system will depend on the quality and 

quantity of the data used to train the model. Here are some considerations for data collection in helmet detection: 

IMAGE SOURCE: The first step in data collection is to determine the source of the images. Images can be captured using surveillance 

cameras, smart phones. The input video is shown in Figure 3.5.1 In Appendices 

DIVERSITY: It is important to collect a diverse range of images that include different lighting conditions, camera angles, and 

backgrounds. This will help to ensure that the model is robust and can accurately detect helmets in a variety of scenarios. 

ANNOTATION: Once the images have been collected, they need to be annotated to identify the regions of interest (i.e., the helmets) 

in the images. This can be done manually by humans, or using automated tools such as bounding box annotation software. 

QUANTITY: The quantity of data collected is also important, as a larger dataset can help to improve the accuracy of the model. It is 

recommended to have at least a few thousand images in he dataset. 

BALANCE: It is important to balance the dataset between positive and negative examples. In other words, there should be an equal 

number of images with and without helmets to ensure that the model does not become biased towards one class. 

PRIVACY: It is important to respect privacy laws when collecting data, especially if the images are captured in public areas. It is 

recommended to obtain consent from individuals who are captured in the images, or to blur their faces to protect their privacy. 

Overall, data collection is an important step in developing a helmet detection system, and care should be taken to ensure that the dataset 

is diverse, balanced, and annotated accurately. 

DATA ANNOTATION 

Data annotation is the process of adding labels to the data to make it useful for machine learning algorithms. In helmet detection, data 

annotation involves identifying the regions of interest (i.e., the helmets) in the images and labeling them accordingly. Here are some 

considerations for data annotation in helmet detection: 

BOUNDING BOXES: The most common form of annotation in object detection is bounding box annotation. This involves drawing 

a box around the region of interest (i.e., the helmet) and labeling it as such. Bounding box annotation is a relatively simple and 

straightforward method, and it can be done manually by humans or using automated tools. 

ACCURACY: It is important to ensure that the annotations are accurate and consistent across the dataset. Inaccurate annotations can 

lead to a decrease in the accuracy of the model and make it difficult to train the algorithm effectively. 

CLASS IMBALANCE: As mentioned earlier, it is important to balance the dataset between positive (helmets) and negative (no 

helmets) examples. This helps to prevent the model from becoming biased towards one class and improves its ability to accurately 

detect helmets in a variety of scenarios. 

OCCLUSION: In some cases, helmets may be partially occluded by other objects, such as clothing or accessories. In these cases, it is 

important to label only the visible parts of the helmet to avoid confusion during training. 

ANNOTATION TOOLS: There are many annotation tools available, ranging from simple tools such as Microsoft Paint to more 

advanced tools such as Labelbox or CVAT (Computer Vision Annotation Tool). The choice of annotation tool will depend on the 

specific requirements of the project. 

Overall, data annotation is a critical step in developing a helmet detection system. Careful consideration should be given to the accuracy 

and consistency of the annotations, as well as the balance between positive and negative examples in the dataset. 

DATA PREPROCESSING 

Data preprocessing is an important step in developing a helmet detection system using YOLO (You Only Look Once), which is a 

popular deep learning algorithm used for object detection. Here are some considerations for data preprocessing in helmet detection 

using YOLO: 

Image Resizing: YOLO works best with images that are a fixed size. Therefore, it is important to resize all the images in the dataset to 

the same dimensions. The recommended size for YOLO is 416x416 pixels. 

Image Normalization: It is recommended to normalize the pixel values in the images to a common range, such as [0,1] or [-1,1]. This 

can help to improve the stability of the model during training. 

Image Augmentation: Data augmentation can help to increase the size and diversity of the dataset, which can help to improve the 

accuracy of the model. Common data augmentation techniques include random cropping, flipping, rotation, and color jittering. 

Label Encoding: In YOLO, the labels for each object in the image consist of the object's class and its bounding box coordinates. 

Therefore, it is important to encode the labels in a format that can be used by YOLO, such as the YOLOv3 format. 

Dataset Splitting: It is recommended to split the dataset into training, validation, and testing sets. The training set is used to train the 

model, the validation set is used to monitor the model's performance during training, and the testing set is used to evaluate the final 

performance of the model. 

Data Normalization: It is important to normalize the dataset to ensure that the distribution of the data does not affect the performance  
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of the model. This can be done by subtracting the mean and dividing by the standard deviation of the dataset. 

Overall, data preprocessing is an important step in developing a helmet detection system using YOLO. The goal of data preprocessing  

 

 

is to ensure that the data is in a format that can be used by the YOLO algorithm and to improve the accuracy and stability of the model 

during training. 

TRAINING 

Training a helmet detection system using YOLOv3 (You Only Look Once version 3) involves the following steps: 

PREPARING THE DATASET: The first step in training a YOLOv3 model for helmet detection is to prepare the dataset. This 

involves collecting a dataset of images containing people wearing and not wearing helmets, and annotating the images with bounding 

boxes around the helmets. The dataset should be divided into training, validation, and test sets. 

CONFIGURING THE YOLOV3 ARCHITECTURE: YOLOv3 is a neural network architecture that consists of multiple layers. To 

configure the architecture, you will need to modify the configuration file for the YOLOv3 model. The configuration file contains 

information such as the number of classes, the dimensions of the input images, and the hyper parameters for the training process is 

shown in figure in 3.5.4 Yolov3 network architecture in Appendices  

PREPARING THE PRE-TRAINED WEIGHTS: YOLOv3 can be trained from scratch, but it is more common to use pre-trained 

weights as a starting point. Pre-trained weights are learned weights from a model that has already been trained on a large dataset. You 

can download pre-trained weights from the official YOLO website or other sources. 

TRAINING THE MODEL: To train the YOLOv3 model, you will need to run the training script with the configuration file, pre-

trained weights, and dataset. The training process involves optimizing the weights of the model to minimize the loss function. During 

training, the model will be evaluated on the validation set, and the weights with the best validation loss will be saved. 

EVALUATING THE MODEL: Once the model has been trained, you can evaluate its performance on the test set. This involves 

running the model on the test images and calculating metrics such as precision, recall, and F1 score. 

FINE-TUNING THE MODEL: If the performance of the model is not satisfactory, you can fine-tune the model by adjusting the 

hyper parameters or by training it for more epochs. 

DEPLOYING THE MODEL: Finally, once you have a trained and evaluated model, you can deploy it to a production environment 

to detect helmets in real-time. 

Overall, training a YOLOv3 model for helmet detection requires careful preparation of the dataset, configuration of the YOLOv3 

architecture, and training and evaluation of the model. With proper training and tuning, a YOLOv3 model can achieve high accuracy 

in helmet detection. 

EVALUATION 

Evaluating the performance of a helmet detection model trained with YOLOv3 involves several metrics that can be used to assess its 

accuracy. Here are some metrics that can be used for evaluating the performance of the model: 

PRECISION: Precision measures the fraction of true positive detections among all the detections. It is defined as the ratio of the 

number of correctly detected helmets to the total number of detected helmets. A high precision score indicates that the model is able to 

accurately detect helmets and avoid false positives. 

RECALL: Recall measures the fraction of true positive detections among all the actual helmets in the images. It is defined as the ratio 

of the number of correctly detected helmets to the total number of actual helmets. A high recall score indicates that the model is able 

to detect most of the helmets in the images. 

F1-SCORE: F1-score is the harmonic mean of precision and recall. It is a measure of the model's overall accuracy and takes into 

account both false positives and false negatives. 

MEAN AVERAGE PRECISION (mAP): mAP is a widely used metric for evaluating object detection models, including helmet 

detection models. It measures the average precision across all classes in the dataset. A high mAP score indicates that the model is able 

to accurately detect helmets in a variety of images. 

Intersection over Union (IoU): IoU measures the overlap between the predicted bounding boxes and the ground truth bounding boxes. 

It is defined as the area of the intersection between the two boxes divided by the area of their union. A high IoU score indicates that 

the predicted bounding box is close to the ground truth bounding box. 

These metrics can be computed by running the trained model on a test dataset and comparing the predicted bounding boxes with the 

ground truth bounding boxes. It is important to use a diverse set of test images to ensure that the model is able to generalize to new and 

unseen data. By evaluating the model using these metrics, you can assess its accuracy and identify areas for improvement. 

INFERENCE 

To create an interface for a helmet detection system based on YOLOv3, you can use a graphical user interface (GUI) toolkit such as 

Tkinter, PyQt, or wxPython. Here are some basic steps for creating a GUI interface for helmet detection: 

 

Design the user interface: The first step is to design the user interface for the application. You can use a GUI designer tool to create  
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the layout of the interface, including buttons, labels, and input fields. 

Add a file chooser: The application should allow the user to choose the input image or video file for detecting helmets. You can add a 

file chooser dialog box to the interface to enable the user to select the file. 

Process the input file: Once the user has selected the input file, the application should load the file and pass it to the helmet detection  

 

 

model for processing. You can add a progress bar to the interface to show the progress of the detection process. 

Display the output: After the model has processed the input file, the application should display the output to the user. You can display 

the output in a new window or in the same window as the input file. The output should include the original image or video with 

bounding boxes around the detected helmets. 

Add configuration options: You can add configuration options to the interface to allow the user to customize the detection process. For 

example, the user may want to set the confidence threshold or select a specific YOLOv3 configuration file. 

Add logging and error handling: Finally, you should add logging and error handling to the application to help diagnose any problems 

that may occur during the detection process. You can add log messages to the interface or write them to a log file. 

By creating a GUI interface for a helmet detection system, you can make it easier for users to use the system and customize the detection 

process. The interface can also provide feedback to the user about the progress of the detection and any errors that occur. 

FINAL OUTPUT 

The Bikers will not wear helmet to detect that person and sent the person and bike image to outlook mail is shown in figure 3.6.6. 

 

 
Figure 3.6.6 outlook output 

 

   TESTING AND IMPLEMENTATION 

4.1 SOFTWARE TESTING 

 

System testing tests the system as a whole. Once all the components are integrated, the application as a whole is tested rigorously to 

see that it meets the specified Quality Standards. This type of testing is performed by a specialized testing team. System testing is 

important because of the following reasons:  System testing is the first step in the Software Development Life Cycle, where the 

application is tested as a whole.  The application is tested thoroughly to verify that it meets the functional and technical specifications. 

The application is tested in an environment that is very close to the production environment where the application will be deployed.  

System testing enables us to test, verify, and validate both the business requirements as well as the application architecture. 

 

UNIT TESTING 

 

         Unit testing is a software testing technique that involves testing individual units or components of a software system in isolation 

to ensure they are functioning correctly. For helmet detection, unit testing can involve testing individual functions or modules of the 

software that are responsible for detecting helmets. Here are some steps you can follow for unit testing in helmet detection: 

Identify the functions or modules: Identify the specific functions or modules of the software that are responsible for detecting helmets. 

For example, this may include modules for image processing, object detection, or neural network inference. 

Define test cases: Define a set of test cases that cover the expected inputs and outputs for each function or module. Test cases should 

include both valid and invalid inputs to ensure that the software handles all scenarios correctly. 

Write unit tests: Write unit tests for each function or module that test its functionality in isolation. Use testing frameworks such as 

Pytest or Unittest to automate the testing process and to assert the expected outputs for each test case. 

Run tests: Run the unit tests to ensure that each function or module is functioning correctly and that all test cases pass. Debug and fix  
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any issues that arise during testing. 

Refine and iterate: Refine the unit tests and test cases as needed to cover additional scenarios or edge cases. Iterate and rerun the tests 

to ensure that the software is functioning correctly in all scenarios. 

         Unit testing in helmet detection involves testing individual functions or modules of the software to ensure that they are functioning 

correctly. By following the steps outlined above, you can identify the specific functions or modules to test, define test cases, write unit 

tests, run the tests, and refine and iterate as needed to ensure that the software is functioning correctly. 

 

 

SYSTEM IMPLEMENTATION 

The title of this project is Helmet Detection for Motor Vehicle Department using Deep Learning. I am using yolov3 and CNN 

Algorithms in my project. 

CONVOLUTION NEURAL NETWORK 

          A convolutional neural network (CNN) is a type of neural network that is specifically designed for image processing tasks such 

as image classification, object detection, and image segmentation. The name "convolutional" refers to the mathematical operation of 

convolution that is used in the network. 

          In a CNN, the input image is passed through a series of convolutional layers, which extract features from the image by applying 

a set of filters or kernels. Each filter slides over the input image, performing a convolution operation to produce a feature map. These 

feature maps are then passed through activation functions such as ReLU to introduce non-linearity into the network. 

        The output of the convolutional layers is then passed through pooling layers, which down sample the feature maps by taking the 

maximum or average value of a given window size. This reduces the dimensionality of the feature maps and makes the network more 

efficient. 

         Finally, the output of the pooling layers is flattened and passed through one or more fully connected layers, which perform the 

final classification or regression task based on the extracted features. 

       One of the key advantages of CNNs is their ability to automatically learn and extract features from the input image, without the 

need for manual feature engineering. This makes them particularly well-suited to image processing tasks, where the features of interest 

may be complex and difficult to define explicitly. 

     CNNs have been used in a wide range of applications, including image classification, object detection, facial recognition, and 

medical image analysis. They have also been used in combination with other types of neural networks, such as recurrent neural 

networks, to perform tasks such as video classification and natural language processing. 

CNN is inspired by the biological phenomenon of the animal visual cortex, which shows the connectivity pattern between different 

neurons. CNN has a wide range of applications such as image processing, video processing, speech processing, and natural language 

processing. CNN consists of four significant steps, such as convolution layer, rectified linear unit (ReLU), maximum pooling layer, 

and fully connected layer. The architecture of the CNN single layer is shown in Fig.4.2.1 

 
 

Figure 4.2.1The architecture of the CNN Layer 

ReLU LAYER 

In the convolution layer, an image is multiplied by filter kernel, which may have some negative values. These negative values bring 

the non-linearity in the image. The non-linearity is then removed by using the rectified linear unit layer by converting all the negative 

values to zero usingwhere, IReLUis the ReLU layer image and Iconvis the convolutional layer image. The ReLU layer output size is 

224X224X3, which is equal to the size of the convolution layer output. The output of the ReLU layer is given to max pooling layer 

. 

MAX POOLING LAYER 
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Pooling is used for the minimization of the computing cost by reducing the dimension of the ReLU layer output. Pooling is also used 

to retain the position and rotational invariant features of an image. There are two types of pooling methods: Maximum and Average 

pooling. In maximum pooling, the maximum value of the given window is selected, while in average pooling, the average value of the 

window is selected . Unlike average pooling, maximum pooling suppresses the noise in the image along with feature reduction. Pooling 

is also used to maintain the localization of the shape of the local object in the image. The window size of 2×2 is selected for maximum 

pooling, which reduced the size to exactly half of the ReLU layer (56×56×27). The larger window size for the maximum pooling may 

result in the fine local information of the image is shown in figure 4.2.3. 

 

 

 

 
Figure 4.2.3 Max Pooling Layer 

 

 

HELMET DETECTION USING CNN 

      In helmet detection, CNNs are used to detect helmets in images and videos. The CNN architecture used in helmet detection typically 

consists of convolutional layers, pooling layers, and fully connected layers. 

     The convolutional layers extract features from the input image using convolution operations, where a set of filters or kernels slide 

over the image to produce a feature map. The pooling layers down sample the feature maps by taking the maximum or average value 

of a given window size. This reduces the dimensionality of the feature maps and makes the network more efficient. 

     The fully connected layers perform the final classification or regression task based on the extracted features. In the case of helmet 

detection, the final task is to classify whether a helmet is present in the image or not. 

     To train the CNN for helmet detection, a dataset of images and corresponding labels is required. The dataset consists of images of 

people with and without helmets, along with corresponding labels indicating whether a helmet is present or not. This dataset is used to 

train the CNN using supervised learning techniques, such as back propagation and gradient descent. 

      Once trained, the CNN can be used to detect helmets in new images and videos by passing the input through the network and 

analyzing the output. The output of the network typically consists of bounding boxes and class labels for each detected object in the 

input image or video frame. 

      Overall, the use of CNNs in helmet detection allows for accurate and efficient detection of helmets in images and videos, making 

it a useful tool for applications such as safety monitoring and surveillance. 

 

 

4.2.5 YOLOV3 ALOGORITHM 

YOLOv3 (You Only Look Once, Version 3) is a real-time object detection 

algorithm that identifies specific objects in videos, live feeds, or images. 

The YOLO machine learning algorithm uses features learned by a deep 

convolutional neural network to detect an object.  

Versions 1-3 of YOLO were created by Joseph Redmon and Ali Farhadi, 

and the third version of the YOLO machine learning 
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algorithm is a more accurate version of the original ML algorithm. The first 

version of YOLO was created in 2016, and version 3, which is discussed 

extensively in this article, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

was made two years later in 2018. YOLOv3 is an improved version of YOLO and YOLOv2.  

YOLO is a Convolutional Neural Network (CNN) for performing object detection in real-time. CNNs are classifier-based systems that 

can process input images as structured arrays of data and recognize patterns between them (view image below). YOLO has the 

advantage of being much faster than other networks and still maintains accuracy. It allows the model to look at the whole image at test 

time, so its predictions are informed by the global context in the image. YOLO and other convolutional neural network algorithms 

“score” regions based on their similarities to predefined classes. High-scoring regions are noted as positive detections of whatever class 

they most closely identify with. For example, in a live feed of traffic, YOLO can be used to detect different kinds of vehicles depending 

on which regions of the video score  

highly in comparison to predefined classes of vehicles is shown in figure 4.2.4 

YOLOV3 WORK  

YOLOv3 (You Only Look Once version 3) is an object detection model that uses convolution neural networks to detect objects in 

images or video frames. It is an improvement over the earlier versions of YOLO, with higher accuracy and faster processing times. 

The YOLOv3 model works by dividing an image into a grid and predicting bounding boxes and class probabilities for each cell in the 

grid. It uses a series of convolutional neural networks (CNNs) to extract features from the image and then predicts the objects in the 

image based on those features. 

YOLOv3 uses convolutional neural network framework and includes a number of technical enhancements, including feature 

concatenation, multi-scale training, and a new classification loss function. It also includes some optimizations for GPU processing, 

which allows it to run much faster than other object detection models. 

Overall, YOLOv3 is a highly effective object detection model, capable of detecting a wide range of objects with high accuracy and 

speed. It has become a popular choice for a variety of computer vision tasks, including surveillance, self-driving cars, and augmented 

reality applications. The Yolov3 working flow in shown in figure 4.2.5 
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Figure 4.2.6 Yolov3 work Flow 

DATA SET COLLECTION 

YOLOv3, the dataset collection process involves gathering and labeling images that will be used to train the object detection model. 

Here are the basic steps involved in collecting a dataset for YOLOv3: 

Determine the objects you want to detect: The first step in dataset collection is to determine the objects that you want to detect using 

YOLOv3. This will help you focus your efforts on finding and labeling images that contain these objects. 

 

 

 

Gather images: Once you know what objects you want to detect, you need to start gathering images that contain those objects. You can 

use various sources such as online image repositories or capture images using a camera or Smartphone. 

Label images: After gathering images, the next step is to label them. Labeling involves drawing bounding boxes around the objects 

you want to detect in each image. There are various tools available that can help with this task such as LabelImg, VoTT, or RectLabel. 

Organize the dataset: Once all the images have been labeled, organize them into a directory structure that YOLOv3 can read. Each 

image should have a corresponding text file with the same name containing the object labels and their coordinates. 

Train the model: After the dataset has been collected and organized, you can use it to train the YOLOv3 model. During training, the 

model will learn to detect the objects in the images based on the labeled data. 

Test and evaluate the model: Once the model has been trained, it's important to test and evaluate it to ensure that it can accurately detect 

the objects in new images. This involves feeding the model new images and comparing its predictions to the ground truth labels. 

HELMET-NONHELMET_CNN.H5 

Helmet-nonhelmet_cnn.h5 is likely a file that contains a trained Convolutional Neural Network (CNN) model that can classify images 

as either containing a helmet or not. 

CNNs are a type of deep learning model commonly used in image classification tasks. They work by analyzing the image data through 

multiple layers of filters and extracting features that are relevant to the classification task. 

In this case, the helmet-nonhelmet_cnn.h5 model has likely been trained on a dataset of images of people wearing helmets and not 

wearing helmets, and it has learned to recognize patterns and features that distinguish between the two categories. The .h5 file extension 

is often used to indicate that the file contains a saved Keras model, a popular deep learning framework for Python. 

To use this model, you could load it into a Python script or notebook and feed it new images to classify. The output would likely be a 

probability score for each class (helmet or non-helmet) based on the input image. 

YOLOV3-CUSTOM.CFG 

yolov3-custom.cfg is a configuration file for a custom-trained YOLOv3 object detection model. 

YOLO (You Only Look Once) is a popular real-time object detection algorithm that can detect objects in images and videos. YOLOv3 

is the third version of this algorithm and includes improvements such as a deeper network architecture, feature pyramid networks, and 

more accurate bounding box predictions. 

The yolov3-custom.cfg file contains the architecture and settings for a YOLOv3 model that has been customized for a specific object 

detection task. This file includes various parameters such as the number of classes to detect, the input and output sizes of the network, 

the number and size of filters used in each layer, and other hyperparameters that affect the model's performance. 

To use this configuration file, you would typically pair it with a custom dataset of labeled images and use it to train the YOLOv3 model. 

The model will learn to detect the objects specified in the yolov3-custom.cfg file and output bounding boxes around them in new 

images or videos. After training, the 
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configuration file can also be used to fine-tune or adjust the model's performance. The Yolov3 cfg file in shown on figure 4.2.9 

yolov3.cfg file  

yolov3.cfg file 

RESULT& DISCUSSON 

In this project the system is built to automatically detect the motor vehicle riders who are not wearing helmets and their vehicles with 

no number plates. The Proposed model detected through real time video. The yolov3 and CNN algorithm and some computer vision 

techniques help in attain good accuracy for detection of helmets and number plates. But, they needed to be punished only detection is 

not sufficient. So, the transport officers can take better actions against the riders. Our System detect the helmet and number plates from 

the real time video and give the result is interpreted the form of the images i.e, it marks the green square against the helmet and red 

square against the number plate is shown in figure 4.2.10 and figure 4.2.11 in Appendices 

REPORT 

In the proposed project five train videos are given has input and the report is generated as shown in table 4.3.1. 

Table 4.3.1 Helmet and Non-Helmet Persons Details 

 

 

 

S.NO Video 

Name 

Helmet Non-

Helmet 

1 video1 11 27 

2 video2 12 19 

3 video3 12 16 

4 video4 14 23 
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5 video5 12 14 

 

The table in reference for each video the total number of person vehicles wearing helmet or not wearing helmet. The sample images 

are shown in figure 4.3.2. 

It helps the motor vehicle department to easily identify the person in the further manner and the remedial measure 

  

Video Name: video1.mp4 

Video1.mp4 helmet wear Person Images 

 

 

 

 

 

 

 

 

 

Video1.mp4 Non - Helmet Person Images 
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Video Name: video2.mp4 

Video2.mp4  Helmet wear Person Images 
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Video2.mp4 Non - Helmet Person Images  

 

 

 

 

 

CONCLUSION & FUTURE ENHANCEMENTS 

CONCLUSION 

This Project “Helmet Detection Using Deep Learning” is successfully analyzed, designed developed tested and implemented. The 

YOLO helmet wearing detection model is proposed in this Project. The modeling capacity of the network on the dependencies between 

distinct points in the image is strengthened by incorporating the attention mechanism into the YOLOv3 to substantially develop the 

model's feature demonstration ability and take out accurate features.. We created a dataset and ran several assessment tests on it to  

 

 

 

check the performance of these proposed strategies. The experimental outcomes suggest that the strategies presented in this research 

develop the YOLO network's performance, making it an outstanding key for the helmet-wearing recognition method in real-world 

circumstances. 

FUTURE ENHANCEMENTS 

There are several potential future enhancements for helmet detection using YOLOv3: 

Improved accuracy: YOLOv3 is a powerful object detection algorithm, but it can still benefit from improvements in accuracy. One 

way to achieve this is through the use of more advanced neural network architectures or training techniques. 

Real-time tracking: Currently, YOLOv3 can detect helmets in a single image, but it can be enhanced to track helmets in real-time video 

footage. This would be especially useful for applications such as monitoring construction sites or sporting events. 

Integration with other sensors: Helmet detection technology can be enhanced by integrating it with other sensors, such as thermal 

cameras or lidar sensors. This would enable the system to detect helmets in low-light or poor visibility conditions. 

Customization for specific applications: YOLOv3 can be customized to suit specific applications. For example, the algorithm can be 

trained to recognize different types of helmets or to detect helmets in specific locations. 

Integration with AI-based decision-making systems: Helmet detection technology can be integrated with AI-based decision-making 

systems to automate safety responses based on the detection of a helmet or the absence of a helmet. This could include triggering an 

alarm or alerting safety personnel to a potential hazard. 

Integration with cloud computing: YOLOv3 can be enhanced by integrating it with cloud computing platforms, which can enable real-

time processing of large amounts of data. This would enable the system to detect helmets more quickly and accurately. 

Object recognition in complex environments: YOLOv3 can be further enhanced to recognize helmets in complex environments, such 

as crowded areas or areas with complex backgrounds. This could involve incorporating advanced algorithms for object recognition and 

segmentation. 

Overall, there is significant ptential for future enhancements of helmet detection technology using YOLOv3. These improvements can 

help make work environments and recreational areas safer for individuals and promote the prevention of accidents and injuries. 
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